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Abstract

The subdivision of sedimentary rock layers by the formation of layer-parallel faults in a developing fold can be explained by a
combination of intralayer weaknesses and internal layer-parallel shear stresses generated by bending. An analysis of stress

equilibrium of layer-parallel shear stresses and ®ber normal stresses indicates that the maximum shear stress increases with the
square of the thickness and the layer-parallel derivative of curvature, termed here coil, evaluated at middepth of the bed. The
maximum shear stress is at middepth in the layer, so a laminated bed, as it bends, will tend to fault at middepth along pre-
existing layer-parallel weaknesses and thereby subdivide the single mechanical layer into two mechanical layers of half the

original thickness. Using the method of computation of coil outlined here, we are able to show that the coil predicts the location
and sense of shear of layer-parallel faults in several ®eld examples. The method illustrates how a few careful ®eld measurements
of layer geometry can provide valuable information about conditions of folding. 7 2000 Published by Elsevier Science Ltd.

1. Introduction

In the course of a study of the monocline along the
eastern margin of the San Rafael swell, Utah, we
noticed in some places, within the central limb of the
fold, that massive sandstone beds contain many layer-
parallel faults whereas in other places they do not. Pre-
liminary observations indicated that the presence of
the layer-parallel faults within the central limb corre-
lates with the tightness of the fold. Where the fold is
quite broadÐradius of curvature of 760 mÐthere are
few layer-parallel faults. Where the fold is quite
tightÐradius of curvature of 40 mÐlayer-parallel
faults are abundant.

Other researchers have observed slip surfaces paral-
lel to bedding in steep limbs of folds, so our obser-
vations are not unique. Cook and Stearns (1975)
mapped faults parallel to cross-bedding in a mono-

clinal fold at Dinosaur National Monument, Utah.
Aytuna (1984) and Pfa� (1986) mapped layer-parallel
faults in kink bands ranging in width from a few
meters to a few hundred meters in the central Appala-
chians. Bevan (1984) noted the existence of slip planes
parallel to bedding within the steep limb of the Isle of
Wight monocline, England. Jackson and Pollard
(1990) mapped bedding-parallel faults within the dip-
ping limbs of a monoclinal folds that formed around
the periphery of several laccolithic intrusions in the
Henry Mountains, Utah.

Studies relevant to the analyses presented here have
been conducted by various authors. Ramsay (1967)
suggested that the amount of layer-parallel slip in an
idealized fold is proportional to the tangent of the
limb dip. Chapple and Spang (1974) showed that the
shear strain rate increases with dip of the bedding
during folding of an anisotropic, linearly viscous layer.
Koch et al. (1981) explained why monoclinal ¯exures
form around the periphery of some laccolithic intru-
sions and showed that the monoclinal ¯exing is a
result of layer-parallel slip at the periphery. Cooke et
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al. (1998) used a Boundary Element Method to show
that layer-parallel faults will be localized within the
limb of a monocline. The analysis suggests that fric-
tional slip would initiate above the centerline and
within the steep limb of the folded layer.

Layer-parallel faulting is important to understanding
folding because it allows a sti�, single, thick mechan-
ical layer to subdivide into a ¯exible multilayer com-
posed of thinner mechanical units. Couples et al.
(1998) proposed that bedding-parallel slip surfaces
were activated during bending of strata at Rattlesnake
Mountain anticline, Wyoming. Their observations
suggest that slip surfaces were progressively activated
as bending proceeded, creating more and more slip
surfaces and a greater number of mechanical units.
Furthermore, Couples et al. (1998) demonstrated with
an experimental model and numerical model that,
during bending, slip occurs ®rst on the middle inter-
face, and then in later stages of bending the slip is dis-
tributed to the outer layers.

The purpose of this paper is to propose a simple
theoretical explanation, using elementary beam theory,
for the formation of layer-parallel faults such as those
described by Couples et al. (1998) as well as several
examples that we have observed. We also show how to
make ®eld measurements of the parameters that con-
trol the faulting.

2. Field examples of layer subdivision

2.1. Spotted Wolf section of San Rafael swell

The San Rafael swell, located in central Utah, is an
asymmetric, domical uplift stretching about 50 km east
and west and 120 km north and south. Beds over the
center and on the west edge of the uplift dip gently
westward. A magni®cent monoclinal fold, with a cen-
tral limb dipping eastward, dominates the eastern edge
of the swell. The central limb is characterized morpho-
logically by dramatic ¯at-irons of Navajo Sandstone
(Fig. 1). The Spotted Wolf section of the monocline
extends 10 km from Spotted Wolf Canyon (at Inter-
state 70) in the north to Iron Wash in the south.

The Spotted Wolf section was chosen for study
because the central limb has a wide range of dip
angles and radii of curvature within the same rock
units. The radius of curvature of the synclinal hinge
ranges from 760 m, near I-70, to 40 m near mid-

length of the section. At both ends of the Spotted

Wolf section, the fold hinges are wide open, the

monocline is broad, and dips are relatively shallow,

308 or less (Fig. 1a). In the middle part of the sec-

tion, the fold hinges are much tighter, the mono-

cline is much narrower and the beds within the

central limb dip much more steeply and are locally

overturned (Fig. 1b).

Small faults in the form of deformation bands1

formed parallel to cross-bedding in the Navajo Sand-

stone in places along the Spotted Wolf section (Fig. 2;

Johnson, 2000). The Navajo Sandstone is a massive,

cross-bedded sandstone. Bedding planes are di�cult to

locate, in part because beds can be as thick as several

tens of meters, but large low-angle cross-beds provide

layering of the Navajo. At the same locations where

faults formed parallel to cross-bedding in the Navajo

Sandstone, faults did not form parallel to cross-bed-

ding in the more thinly bedded, cross-strati®ed

Entrada Sandstone.

The frequency and occurrence of faults parallel to

Fig. 1. (a) Arial view of San Rafael swell, Spotted Wolf section. I-70

is out of view to the right. White face of ¯at-irons is Navajo Sand-

stone. (b) Arial view of southern end of Spotted Wolf section. Sudden

change in dip is evident with beds dipping steeply in the bottom of the

picture and shallowly in the top.

1 Deformation bands are thin, tabular bodies of highly localized

cataclasis in porous sandstones. They have been studied in detail by

several investigators (Aydin, 1977, 1978; Aydin and Johnson, 1978,

1983; Jamison and Stearns, 1982; Underhill and Woodcock, 1987;

Cruikshank et al., 1991; Zhao and Johnson, 1991; Antonelli et al.,

1994).
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bedding or low-angle cross-bedding vary from place to
place along the Spotted Wolf section and appear to
correlate with tightness of the synclinal hinge and with
thickness of bedding in sandstone units. The frequency
of cross-bed-parallel faults, where radius of curvature
of the synclinal hinge is of the order of 50 m, is much
higher than where the radius of curvature of the syncl-
inal hinge is of the order of 1000 m. For example,
small cross-bed-parallel faults are scarce in large road-
cuts where I-70 provides nearly perfect exposures in
the Navajo Sandstone at the northern end of the
Spotted Wolf section. In contrast, they are abundant
where the fold is tight in steeply dipping Navajo beds
near the synclinal hinge.

2.2. Shikellamy fold

The spacing of layer-parallel faults was documented
in a railroad cut in the Shikellamy fold (Fig. 3), a
monoclinal fold in the Sherman Creek Member of the
Catskill Formation, along the northwest bank of the
Susquehanna River at Northumberland, Pennsylvania
(Aytuna, 1984). The central limb of the Shikellamy
fold is about 150 m long.

The Shikellamy fold is characterized by layer-paral-
lel faults that are sparse in the outer limbs and numer-
ous in the central limb. The spacing of layer-parallel
faults ranges from 0.25 to 0.7 m within the central
limb. In contrast, the spacing is 2±4 m in the southern
outer limb and 25 m in the northern outer limb of the
fold. As noted by Aytuna (1984), the sense of shear
parallel to bedding, as viewed in Fig. 3, was right-lat-
eral for faults in the steep central limb and the outer
northern limb and left-lateral for faults in southern
outer limb.

2.3. Amity Hall fold

Pfa� (1986) studied monoclinal folds in interbedded
mudstone and siltstone in central Pennsylvania. One of
these folds (Fig. 4) is exposed in a roadcut near Amity
Hall, along highway 22/322 along the Juniata River,
about 35 km northwest of Harrisburg, Pennsylvania.
The rocks are part of the Devonian Trimmers Rock
and Brallier formations. The fold is shown via a sketch
of traces of fractures; bedding surfaces were not
mapped. Thus the spacing of the lines indicates the
spacing of fractures. The sketch shows that the central
limb of the fold, which is about 2 m long, is more
thoroughly delaminated than the two outer limbs

Fig. 3. Shikellamy fold, Pennsylvania. Faults are mapped in detail in the lower picture. Right-lateral bedding-parallel faults are localized within

the central limb.

Fig. 2. Cross-bedding-parallel faults in the Navajo Sandstone. White

highlighted cross-bedded surfaces are deformation bands that accom-

modate small amounts (not measurable) of slip. Lens cap in lower

left for scale.
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(Fig. 4a). The number of fractures at least doubles in
the central limb.

The extra fractures in the central limb extend only
as far as the fold hinges, as shown in a detailed sketch
(Fig. 4b) of the synclinal hinge marked with a rec-
tangle in Fig. 4(a). The sketch shows several layer-par-
allel faults that accommodated about 1±2 cm of right-
lateral slip and terminated near the hinges of the fold.
The (mechanical) hinges separate right-lateral from
left-lateral shearing on the upper and lower surfaces of
the layer.

3. Theoretical analysis of layer subdivision

3.1. The problems

The three monoclinal folds all have layer-parallel
faults within the central limbs. In two of the three ®eld
examplesÐthe narrow, 2 m wide, Amity Hall mono-
clinal fold and the 150 m wide, Shikellamy foldÐthe
layer-parallel faults are much more closely spaced
within the short central limbs than in the long outer
limbs on both sides of the folds. We mapped the entire
width of the central limb of the Amity Hall fold, and

in this case we could see that the layer-parallel faults
extend essentially from hinge to hinge. In the much
largerÐ1500 m widthÐmonocline on the east side of
San Rafael swell, we could map cross-bed-parallel
faults in sandstone only near the synclinal hinge of the
central limb.

Based on these ®eld observations, we choose to ask
the following questions about the subdivision of sedi-
mentary rocks by formation of layer-parallel faults:
How do layer-parallel faults form along pre-existing
layer-parallel weakness in a bent layer? Why did faults
form parallel to cross-bedding in the massive Navajo
Sandstone but not in the more thinly bedded Entrada
Sandstone? And, why did cross-bedding-parallel faults
form in the Navajo Sandstone near the tight synclinal
hinge where the radius of curvature is 40 m but not
near the broad synclinal hinge where the radius of cur-
vature is 760 m?

3.2. Shear stress within a bent layer

The shear stress responsible for formation of layer-
parallel faults can be generated within a bent layer by
a change in curvature with position in the layer. We
will derive a relationship between shear stress and cur-
vature using elementary beam and plate theory (e.g.
Marin and Sauer, 1954; Timoshenko and Goodier,
1961).

In beam and plate theory, the bending of a layer is
described solely in terms of a linear distribution of
normal stress and normal strain parallel to the layer.
For the positive curvature shown in Fig. 5(a), the
layer-parallel normal stresses are compressive at the
top, tensile at the bottom, and zero at middepth
(Fig. 5b). These stresses are known as the ®ber stres-
ses. For a thin beam it is assumed that they have the
linear form,

sf � Bkn �1a�
in which B is an elasticity modulus,

B � E

�1ÿ n2� : �1b�

E is Young's modulus, n is Poisson's ratio, k is cur-
vature at middepth of the layer, and n is the radial dis-
tance from middepth. Thus the ®ber stresses are
proportional to the curvature.

The shear stress distribution within the layer
depends on the boundary conditions as well as the
change in ®ber stresses along the layer. The top and
bottom boundaries at the layer contacts (Fig. 5b) are
subjected to a shear stress, tcont. This stress derives
from the mechanical interaction between the layer and
its surroundings. For example, if slip between layers is
left-lateral, the layers are subjected to left-lateral shear

Fig. 4. (from Pfa�, 1986) (a) Map of traces of fractures in Amity

Hall fold. Localization of bedding-parallel fractures in steep limb

(Mapped by A.M. Johnson). (b) Detail map of hinge marked with a

box in (a). (Mapped by V. Pfa�).
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at contacts, tcont. If the layers slip freely past each
other, tcont is zero. The element of the layer (Fig. 5b)
is also subjected to shear stresses, t(n ), along its sides.

In order to derive an expression for the shear stress
distribution through an element (Fig. 5b) we select a
piece of the element (Fig. 5c) that includes the upper
surface of the layer and a thickness dn of the element.
Acting on each side of the piece are the linear ®ber
stress distributions and the unknown shear stress dis-
tributions, t(n ). Acting on the top is the shear stress,
tcont, and on the bottom is t(n0). The ®ber stresses
change across the piece.

The ®ber stresses at the left-hand end of the piece of
the element are given by Eq. (1a), whereas the ®ber
stresses at the right-hand side of the piece are,

sf � @sf

@s
ds � B

�
k� dk

ds
ds

�
n: �1c�

As indicated in Eq. (1c), the change in curvature,
dk
ds ds, across the element results in a change in the ®ber
stresses,

@sf
@ s ds, across the element; it is this change in

curvature and ®ber stresses that generates the shear
within the layer.

We de®ne t(n0) as the shear stress generated at the
bottom of the piece of the element. Its relation to the
change of ®ber stresses, and curvature, is obtained by
summing forces equal to zero in the horizontal direc-
tion,

�tcont ÿ t�n0��dsdk
ds

dsB
�T=2
n0

ndn � 0: �2a�

Thus the shear stress along the base of the piece of
the element is,

t�n0� � tcont
dk
ds

B

�T=2
n0

ndn

� tcont
dk
ds
�B=2���T=2� 2 ÿ n2

0 � �2b�

in which the sign (2) of tcont is determined from the
slip direction of the beds (tcont is positive for right lat-
eral slip). Eq. (2b) also gives the shear stress, t(n0), on
the vertical sides of the piece, adjacent to the base
(Fig. 5c).

Eq. (2b) indicates that the relation between shear
stress, t(n0), and distance from middepth, n0, is para-
bolic (Fig. 5b). Thus the shear stress on the base of
the tiny element increases from the boundary value,
tcont, at the top of the layer (n0=T/2 ) to its maximum
value, tmid, at middepth (n0=0) in the layer:

tmid � tcont
dk
ds

BT 2

8
: �2c�

3.3. Geometric interpretation of curvature and coil

We will use Eq. (2c) to understand why layer-paral-

Fig. 5. (a) Bent beam. (b) Element of beam showing ®ber stress distribution, layer-normal shear stress, t�n�, distribution, and contact stress, tcont,
on top and bottom surfaces. (c) Small piece of element with ®ber stresses, sf , and layer normal shear stresses.
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lel faults form, but ®rst we must discuss the derivative
of curvature with respect to arc length, dk/ds, which
we term coil. Coil can be interpreted geometrically
using curvature, k � dy=ds, where tan y is the slope of
the layer. Curvature can be visualized geometrically
with the radius of curvature, r � 1=k: The radius of
curvature is the radius of the circle constructed at a
point along a curve with the same curvature and tan-
gent as the curve. The derivative of curvature with
respect to distance, s, or coil, at a point is

dk
ds
� d2y

ds2
: �3a�

The coil can be visualized with two nearby radii of
curvature. Fig. 6a shows a curve with an open bend
that becomes progressively tighter with distance along
the curve. The open bend has a radius of curvature r1
at point 1, and the tight bend a distance ds away has a
much smaller radius of curvature r3 at point 3. In
terms of radius of curvature, the coil given by Eq. (3a)
at the midpoint, 2, becomes

�
d2y
ds2

�
2
�
�

d

ds

�
1

r

��
2

1

1

r3
ÿ 1

r1
s3 ÿ s1

� ÿ1
r3r1

�
r3 ÿ r1
s3 ÿ s1

�
: �3b�

An extreme value is obtained from a circle (Fig. 6b).
It has zero coil everywhere because

1

r2
ÿ 1

r1
� 0:

The coil of a straight line is also zero because a
straight line is the limit of a circle with an in®nite
radius of curvature.

3.4. How layers subdivide by layer-parallel faulting

Eq. (2c) suggests an explanation for the experimen-
tal and numerical results by Couples et al. (1998) that
slip occurs ®rst on the middle interface in a bending
multilayer. Our analysis shows that change in bending
with position along the layer generates layer-parallel

Fig. 7. Stress state within a bent beam. (a) Bending induces a layer-

parallel ®ber stress sf and shear stress t(n0). (b) Included with the

bending stresses is a con®ning pressure, sc. (c) Tractions acting on a

surface inclined a degrees to the ®ber stresses and layer.

Fig. 6. (a) Coil at point 2 can be visualized with change in radius of

curvature from point 3 to 1. (b) The coil along a circle is zero since

r1 � r2 for any two points 1 and 2 on a circle.
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shear stress and that the position of the maximum
value is at middepth in a layer. The analysis, though,
is incomplete without consideration of the e�ect of the
normal stress acting on the slip surface.

To make the analysis complete, we assume that fail-
ure occurs according the Coulomb failure criterion,
thus slip occurs along an interface when

~t � C� m ~sn �4a�
where ~t and ~sn are the shear and normal tractions
resolved on the interface, C is cohesion, and m is the
coe�cient of internal friction. We analyze the stress
state shown in Fig. 7(a) and determine the planes of
failure in the case of a homogeneous layer. The stress
state is determined at every point within the layer with
the shear and ®ber stresses (Fig. 7a). Pure bending
does not generate a normal stress perpendicular to the
layer according to elementary beam theory, but we
include an arbitrary con®ning stress, sc (Fig. 7b). The
shear and normal tractions (Fig. 7c) on a surface
inclined at an angle a to the direction of ®ber stresses

are:

~t � t�n0� cos�2a� ÿ sf

2
sin�2a� �4b�

~sn � �sf � 2sc�
2

sf

2
cos�2a� ÿ t�n0� sin�2a� �4c�

at any point in the layer.
We calculate the stress ratio ~t= ~sn using 4 and repla-

cing t(n0) with tmid in order to determine if failure will
occur at middepth of a bent layer. Fig. 8(a) is a plot
of the stress ratio ~t= ~sn at middepth of the layer where
sf=0. In Fig. 8(a), tmid is determined with Eq. (2c)
using tcont=0 and reasonable values for B (5.05� 1010

N/m2), dk/ds (2.5 � 10ÿ4 mÿ2), and T (100 m). If we
assume a cohesionless rock with a typical friction coef-
®cient of 0.6 (Byerlee, 1978), then we can see in
Fig. 8(a) that failure in an isotropic layer will occur on
planes oriented at angles a=158 and 758, where the
stress ratio ~t= ~sn equals the strength, 0.6. The stress
ratio parallel to layering, at a=08, is lower than the

Fig. 8. Stress ratio ~t= ~sn at middepth of a layer (sf=0) on surfaces inclined a degrees to the layer. (a) Isotropic layer with layer-parallel shear

stress at middepth is 1.58 � 1010 N/m2. Failure occurs on planes oriented at a=158 and a=758 where the stress ratio ~t= ~sn equals the strength

0.6. (b) Anisotropic layer with layer-parallel planes of low strength. At a lower layer parallel shear stress of 1.33 � 1010 N/m2, failure occurs on

the layer-parallel weak surface.
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strength, 0.6, so failure cannot occur parallel to layer-
ing.

If the layer is not isotropic, but rather contains pre-
existing bedding parallel planes (a=0) of lower
strength (Fig. 8b), then at a lower dk/ds value (2.1 �
10ÿ4 mÿ2) the stress ratio ~t= ~sn can equal the shear
strength on the weak surfaces, before the ratio ~t= ~sn

equals failure at 0.6 in other directions (Fig. 8b). Thus
failure will occur on the bedding-parallel weak surfaces
at an earlier stage in bending of the rock, before the
stress ratio ~t= ~sn can become large enough for failure
to occur on the planes oriented at angles a=158 and
758. This is a reason sedimentary bedding with bed-
ding-parallel laminations tends to form layer-parallel
faults.

We have shown that, if a fault forms at middepth
due to bending stresses (i.e. shear and ®ber stresses),
the fault will form along layer-parallel weaknesses, if
they exist. We will now show that a layer-parallel fault
will form at middepth of the layer before a layer-paral-
lel fault forms at any other depth. At any point in the
layer, when a=0, ~t � t�n0� and ~sn � sc: Thus at any
point in the layer, it is the ratio of the layer-parallel
shear stress and the layer-normal con®ning stress,
t�n0�=sc, that determines whether failure occurs along
bedding-parallel weaknesses. But since sc is constant,
it is t�n0� that determines whether a bedding-parallel
fault forms. We showed in Eq. (2b) that t�n0� is maxi-
mum at middepth of the layer where the shear stress is
tmid (Eq. 2c). Thus if the shear strength parallel to
bedding planes is constant and lower than the shear
strength in all other directions, the ®rst place the stress
ratio t�n0�=sc will equal the layer-parallel shear
strength will be at middepth, and a layer-parallel fault
will subdivide the layer at middepth.

3.5. E�ect of contact strength between layers on layer-
parallel faulting

If we suppose that the contact stress, tcont, is negli-
gible, that is, we suppose that layers slip freely over
one another, then Eq. (2c) indicates that the layer-par-
allel shear stress is proportional to the elasticity mod-
ulus, B, to the square of the thickness of the original
layer, T 2, and to the coil, dk=ds: Other things being
equal, the sti�est, thickest layer in a stack of layers
will tend to subdivide ®rst as magnitude of the coil is
increased. Suppose all the layers are of the same sti�-
ness (same elastic modulus, B ) but of di�erent thick-
nesses, and suppose the layers are laminated with pre-
existing planes of weakness parallel to layering. As the
layers are bent, the layer-parallel shear stresses will
increase until the shear strength is ®rst overcome at
middepth of the thickest layer and the layer subdi-
vides. If all the layers are of the same thickness but of

di�erent sti�nesses, then the sti�est layer will tend to
subdivide ®rst.

In either case, we now have two layers of thickness
T/2. Each layer has a parabolic distribution of shear
stress, but the maximum shear stress has been reduced
by a factor of four. As the coil increases, the shear
stress increases and each of these laminated layers, in
turn, becomes subdivided. Now we have four layers of
thickness T/4, and the layer originally of thickness T is
a multi-layer.

In order to explain the e�ect of contact strength on
the subdivision of layers we de®ne the shear stress gen-
erated by the coil, dk/ds, such that

tcoil � ÿdk
ds

BT 2

8
: �5a�

Eq. (2c) then can be written

tmid � tcont � tcoil: �5b�
In this form we can visualize the e�ect of the con-

tact stress, tcont, on intralayer stress at middepth, tmid.
Whether the contact stress adds to or subtracts from
the intralayer shear stress at middepth depends on the
sense of interlayer slip. By de®nition, right-lateral
shear stress is positive. Right-lateral slip, therefore,
increases tmid when tcoil is positive (dk/ds < 0) and
decreases tmid when tcoil is negative (dk/ds>0).

3.6. Cross-bedding-parallel faults in Navajo Sandstone

It appears as though we can understand the abun-
dance of cross-bedding-parallel faults in the Navajo
Sandstone as compared to the lack of cross-bedding-
parallel faults in the Entrada in terms of bedding
thicknesses of these formations. The Entrada Sand-
stone contains many cross-bedded layers with thick-
nesses of a few meters. The Navajo Sandstone on the
other hand, contains only a few beds with thicknesses
of 0100 m, but has numerous cross-bedding surfaces.
If contact stress is neglected, the middepth shear stress,
tmid, is proportional to the square of the thickness and
directly proportional to the coil, Eq. (2c). Assuming
similar coils in the two rock units, the middepth shear
stress in the massive Navajo Sandstone should be 400±
10,000 times larger than the middepth shear stress in
the beds of the Entrada Sandstone. Thus there is a
much higher tendency for layer-parallel faulting in the
Navajo than in the Entrada.

We must not ignore the fact that the cross-bedding
surfaces are not bedding-parallel but are typically
oriented at an angle a<2208 to the ®ber stresses and
the bedding planes. In Fig. 8(a and b) we can see that
the stress ratio ~t= ~sn is smaller at a= 2 208 than at
a=08. However, the planes of weakness in the Navajo
Sandstone clearly are restricted to large cross-beds and
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not to bedding-parallel surfaces. Thus the faults tend
to occur along the weak, cross-bedding surfaces rather
than parallel to bedding.

3.7. Critical coil

For a layer-parallel fault to form, the coil at mid-
depth must be large enough for the stress ratio tmid= ~sn

to overcome the internal shear strength of the layering
within the bed. Thus, there is a critical value for the
layer-parallel shear stress, tcrit, and therefore the coil,
at which layer-parallel faults occur. This critical coil
value is obtained from Eq. (2c) after substituting tcrit
for tmid1:�

dk
ds

�
crit

� 8�tcont ÿ tcrit �
BT 2

: �6a�

In dimensionless form, Eq. (6a) can be written as�
dk
ds

��
crit

� tcont ÿ tcrit

B
�6b�

in which the nondimensional coil is�
dk
ds

��
crit

�
�

dk
ds

�
crit

�
T 2

8

�
: �6c�

The coil and the thickness of the layer being bent
are clearly the most important geometric parameters
that we need to measure in order to understand why
layer-parallel faults occur. These parameters combine
to form the nondimensional coil, Eq. (6c), a quantity
that we can compare from fold to fold at all scales.

4. Measuring curvature and coil

4.1. Coil

We need to be able to determine the sign and mag-
nitude of coil, dk/ds, along folded layers in order to
determine locations of high layer-parallel shear stress,
and thus locations of layer-parallel faulting. The sign
of the coil at a point is determined by Eq. (3b) and is
illustrated with Archimedes' spirals in Fig. 9. One has
positive coil and the other has negative coil at every
point on the curve. While traversing a curve in a
clockwise direction, if at a point the curvature changes
from larger to smaller, the coil is negative, as is the
case at every point on the negative spiral in Fig. 9(b).
While traversing a curve in a counterclockwise direc-
tion, if at a point the curvature changes from smaller
to larger, the coil is positive, as is the case at every
point on the positive spiral in Fig. 9(a). In the example
of Fig. 6(a), the coil is positive at point 2 since the cur-
vature changes from smaller at point 1, to larger at
point 3 as we traverse the curve in a counterclockwise
direction.

4.2. Measurement of curvature and coil in the ®eld

We will develop a method for calculating curvature
and coil along a contact in a cylindrical fold using
®eld measurements. The method requires ®ve dip
measurements along a line normal to the strike of the
cylindrical fold, and the distances between pairs of
these points, measured along the fold (Fig. 10). The
curvature, dy/ds, is calculated at points (s2,y2), (s3,y3),
and (s4,y4), and then the coil is calculated at point
(s3,y3) with these dy/ds values.

Fig. 9. Negative and positive coil. (a) Positive Archimedes' coil has

positive coil at every point. (b) Negative Archimedes' spiral has

negative coil at every point.
Fig. 10. Hypothetical pro®le of a fold and ®ve points spaced

unevenly along the fold. Coil can be approximated at (s3,y3) with 7.
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The method presented here (after Nakamura, 1996)
allows for unequal spacing of the ®ve points. We want
to allow for uneven spacing of points because the ®eld
data may not be available everywhere on the fold. We
®rst outline the procedure delineated in 7 before deriv-
ing the steps.

The curvature, dy/ds, is calculated at a point (si,yi)
using the three points (siÿ1, yiÿ1), (si,yi), and (si+1,
yi+1). The derivative, dy/ds, is assumed to have the
form�

dy
ds

�
i

� aiyi � aiÿ1yiÿ1 � ai�1yi�1 �7a�

in which the coe�cients are the solution to the
equations,

ai � aiÿ1 � ai�1 � 0

0� aiÿ1fsiÿ1 ÿ sig � ai�1fsi�1 ÿ sig � 1

0� aiÿ1fsiÿ1 ÿ sig2�ai�1fsi�1 ÿ sig2� 0 �7b�

or,

24 ai
aiÿ1
a1�1

35 �

26666666664

�siÿ1 ÿ si �2 ÿ �si�1 ÿ si �2
�si�1 ÿ si ��siÿ1 ÿ si ��si�1 ÿ siÿ1�

si�1 ÿ si
�siÿ1 ÿ si ��si�1 ÿ siÿ1�
ÿ�siÿ1 ÿ si �

�si�1 ÿ si ��si�1 ÿ siÿ1�

37777777775
: �7c�

The coil, d2y=ds2, is determined at (s3,y3) using the
curvature values calculated at (s2,y2), (s3,y3), and
(s4,y4). The coil is calculated as a derivative of ®rst de-
rivatives of the form:�

d2y
ds2

�
3
� a3

�
dy
ds

�
3

�a2
�

dy
ds

�
2

�a4
�

dy
ds

�
4

: �7d�

Here the coe�cients a2, a3, and a4 are the same as
in Eq. (7c) with i=3 since the spacing is the same.

Now we will explain how 7 are derived. The method
deals with unequally spaced points by expressing the
functions y(s ) and dy/ds in Eq. (7a) and Eq. (7d) as a
Taylor expansion. This can be illustrated with Eq.
(7a); Eq. (7d) is expanded in the same way.

Recognizing that a function, y(s ), can be written as
a Taylor expansion about a point si,

y�s� �
X1
n�0

y�n��si ��sÿ si �n
n!

Eq. (7a) can be expressed:

dy
ds

����
i

� aiy�si � � aiÿ1

�
y�si � � y0�si �fsiÿ1 ÿ sig � y00�0�

2!

� fsiÿ1 ÿ sig2�y
000�0�
3!
fsiÿ1 ÿ sig3� � � �

�

� ai�1

�
y�si � � y0�si �fsi�1 ÿ sig � y00�0�

2!

� fsi�1 ÿ sig2�y
000�0�
3!
fsi�1 ÿ sig3� � � �

�
: �8a�

After reorganizing terms and dropping third-order
and higher terms,

dy
ds

����
i

1y�si ��ai � aiÿ1 � ai�1 � � y0�si ��aiÿ1fsiÿ1 ÿ sig

� ai�1fsi�1 ÿ sig�

�y
00�si �
2!

h
aiÿ1fsiÿ1 ÿ sig2�ai�1fsi�1 ÿ sig2

i
: �8b�

To solve for the coe�cients, we set the coe�cients
of y(si), y '(si), and y0(si) in Eq. (8b) to 0, 1, 0, respect-
ively:

ai � aiÿ1 � ai�1 � 0

0� aiÿ1fsiÿ1 ÿ sig � ai�1fsi�1 ÿ sig � 1

0� aiÿ1fsiÿ1 ÿ sig2�ai�1fsi�1 ÿ sig2� 0: �8c�
Thus we have derived equations equivalent to Eq.

(7b).
The error of the solution can be estimated with the

higher-order term that is not used to determine the
coe�cients, y 000�0�

3! �ai-ls
3
i-l � ai�ls

3
i�l�: Because we neglect

terms with third and higher derivatives, the result is a
second-order approximation.

4.3. Distribution of coil illustrated on a structural pro®le

Dip angle, y, and its ®rst derivative, curvature,
dy/ds, are familiar geometric quantities that we use to
describe folds. For example, curvature has been used
to determine the location of joint formation in folded
beds (e.g. Fischer and Wilkerson, 2000). Although coil,
the second derivative of slope angle, d2y/ds 2, is less
familiar, it relates to the subdivision of layered rocks,
so it is a quantity with which we should become fam-
iliar.

A strike view of the Palisades monocline, Grand
Canyon, Colorado, constructed by Reches (1978) can
be used to demonstrate coil on a structural pro®le.
The Palisades monocline is a branch of the East Kai-
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bab monocline near the con¯uence of the Colorado
and Little Colorado rivers. The canyon of Palisades
Creek is about 1200 m deep and o�ers an unusual
opportunity to examine the actual geometry within a
monocline, based on ®rst-hand observations. The
upper part of the canyon was mapped by a combi-
nation of photogrammetry and ®eld observation, and
the lower part was mapped with plane-table methods,
so the map, and the derivative strike view (Fig. 11) are
highly accurate. The result is a clear view of a mono-
cline, from a near-vertical fault zone in Precambrian,
basement rocks to the Permian, Coconino Sandstone
and Kaibab Limestone at the canyon rim (Fig. 11).

We can describe the shapes of the contacts between
formations in terms of coil. Fig. 11a displays normal-
ized coil, expressed in units of 10ÿ2, calculated at lo-
cations along four contacts. The average thickness of
the formations in the monocline is about 200 m, so we
use a thickness of T=200 m to obtain the normalized
coil. The shaded parts of Fig. 11a show locations of
large coil. The arrows show sense of shear. Of course,
coil does not completely determine whether layer-par-
allel faults form, because formation of such faults
depends also on the thickness of the bed and the
strength in shear along layering of the rock. We can,
however, determine directly from these measurements

where in a fold thick beds are likely and unlikely to be
divided by layer-parallel faults.

The largest values for coil in the Palisades mono-
cline occur adjacent to sharp hinges (Fig. 11a). The
upper and lower contacts of the Bright Angel Shale
(Cambrian) have slightly di�erent forms. The lower
contact is adjacent to the basement fault and the beds
are steep to overturned there. The contact has sharp
synclinal and anticlinal hinges. Fig. 11a shows that the
coil is large adjacent to both hinges. The contact
between the top of the Bright Angle Shale and the bot-
tom of the Muav Limestone (Cambrian) is about 100
m above the end of the basement fault. It has a sharp
synclinal hinge and an open anticlinal hinge. Fig. 11a
shows that the coil is large only adjacent to the sharp
synclinal hinge.

The contact between the top of the Temple Butte
Limestone (Cambrian) and the bottom of the Redwall
Limestone (Mississippian) has a distinct synclinal
hinge but no anticlinal hinge; it is probably outside the
view to the right. The coil is small and highly localized
near a contraction fault in the contact at the base of
the Redwall. The top of the Redwall is broadly folded
and does not have sharp hinges. The coil is small in
the top of the Redwall and it decreases rapidly and the
fold broadens upward, away from the fault.

5. Location of layer-parallel faults in ®eld examples

5.1. Amity Hall monoclinal fold

The shape of the Amity Hall fold (Fig. 4) is charac-
teristic of a monoclinal kink band (Reches and John-
son, 1976). It has sharp hinges, with radii of curvature
of about 0.6 m, and straight limbs, with larger radii of
curvature of 3±4 m. Layer-parallel faults in the fold
are in both the short central and long outer limbs.
There is a high concentration of layer-parallel faults
adjacent to the sharp hinges within the central limb of
the fold (Fig. 4a).

In this example we know the spacing of faults
and we can measure coil, so we should be able to
understand why the layer-parallel faults are distribu-
ted as they are. We measured the coil at ten lo-
cations along layer-parallel faults in the fold. The
measurements of normalized coil are plotted in
Fig. 12. They show that the locations of the high
concentration of faults in the central limb adjacent
to the hinges correspond with the locations of lar-
gest magnitude of normalized coil of ÿ1.6 and
+1.6 near the anticlinal hinge and ÿ1.9 near the
synclinal hinge.

The high normalized coil on both sides of the
hinges suggests that we might expect a concen-
tration of layer-parallel faults near the hinge in

Fig. 11. Accurate composite cross-section of the Palisades monocline.

Coil was calculated at each of the indicated locations. The largest

coil at each interface is located adjacent to the sharp hinges.
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both the outer limbs and the inner limb. We ob-

serve that the faults are concentrated, though, only

on the central limb.

The lack of faults on the outer limbs can be under-

stood if the Amity Hall fold did indeed form as a kink

band and we consider the e�ect of the contact stress,

tcont. To obtain the kink band form, it is necessary

that there be frictional or cohesive contact strength2

between layers according to Honea and Johnson

(1976) and Reches and Johnson (1976). This is so

because, for an isolated kink band to form (without a

train of folds), it is necessary that the bending moment

be zero at the edge of the band. They have shown

that, for this to occur, the contact stress, tcont, Eq.

(2b), must be some non-zero critical value equal to the

adhesive strength between adjacent layers. Consider

now Eq. (2c) and, in the case of our view of the Amity

Hall Fold, a positive value for tcont applied to the

layers. Then the e�ect of tcont on the middepth layer-

parallel shear stresses, tmid, is to increase tmid in the

central limb where the coil is negative (tcoil is positive),
and decrease tmid on the outer limbs where the coil is

positive (tcoil is negative). It is therefore likely that an

e�ect of the contact stress was to reduce the intralayer

shear stresses on the outer limbs to the extent of pre-
venting layer-parallel faults from forming there, as
observed in the ®eld example.

The pattern of layer-parallel faults in the Amity
Hall fold brings up two additional issues that are
beyond the scope of this paper. The simplest issue is
that the layer-parallel faults grow during fold develop-
ment so that they cause the fold to change shape as it
grows. In e�ect, a single thick layer locally changes to
a multilayer laminate as the fold grows. This must
cause the fold form to evolve. A corollary is that the
measurements of coil represent only the last stages of
growth of the folds as we see them. Another issue is
that this paper concerns only the shear stresses gener-
ated by bending, whereas kink folds form under con-
ditions of maximum compression subparallel to
layering in the outer limbs (Reches and Johnson,
1976). Therefore, one should expect that the maximum
compression will contribute to the layer-parallel shear
on dipping limbs.

5.2. San Rafael swell monocline

The question of why cross-bedding faults are abun-
dant in the Navajo Sandstone at San Rafael swell near
the tight fold hinges, whereas they are scarce near the
broad fold hinges, can be addressed with the result in
Eq. (2c) and Eq. (3b). First, we assume that the shear
stress is solely a result of bending. Then Eq. (2c)

Fig. 12. Calculations of radius of curvature and coil at ten points along a bedding contact in the Amity Hall fold. The largest coil is located adja-

cent to the sharp hinges.

2 Pfa� (1986) and Johnson and Pfa� (1989) have shown that non-

linear resistance to slip, say of a power-law form, is su�cient to

cause kink-like folds to form. The resistance need not be so highly

nonlinear as strength.
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shows that the shear stresses at middepth of the layer,
when tcont=0, are proportional to the coil, dk/ds, of
the bent layer. The coil near the tight synclinal hinge,
where cross-bed-parallel faults were observed, is larger
than near the synclinal hinge of the broader part of
the fold, where cross-bed-parallel faults were not
observed.

The radius of curvature was measured in several
places within the Carmel Formation, which overlies
the Navajo Sandstone, and in the Entrada Sandstone,
which overlies the Carmel. At a location where the
synclinal hinge of the Entrada Sandstone is tight
(Fig. 13), the radius of curvature in the hinge is r=40
m (k=25 � 10ÿ3 mÿ1). At a location within the Car-
mel Formation where the synclinal hinge is broad, the

radius of curvature is r=760 m (k=1.3 � 10ÿ3 mÿ1).
The di�erence is more than an order of magnitude.

We can roughly estimate the coil if we assume the
curvature is zero on the central limb of the fold and
both of the measured hinges are the same distance, Ds
(measured in meters), from the location of zero curva-
ture, then the coil adjacent to the broad hinge is

dk

ds
�

1

760
ÿ 0

Ds
� 1

760Ds
�mÿ2�

and the coil adjacent to the tight hinge is

dk
ds

1

1

40
ÿ 0

Ds
� 1

40Ds
�mÿ2�:

Therefore the coil is nearly 20 times larger at the lo-
cation with the tighter hinge. Assuming the bed thick-
ness at both locations is the same (200 m for Navajo
Sandstone), the middepth shear stress within the
Navajo at the location with the tighter hinge would
have been nearly 20 times the middepth shear stress at
the other location (Eq. 2c). Furthermore, if the spacing
of the two measurements of curvature is an arc dis-
tance of Ds=500 m, the normalized coil in the tighter
hinge is about 0.5 whereas that in the open hinge is
about 0.026. Thus it seems clear that the concentration
of cross-bedding-parallel faults near the synclinal hinge
of the Spotted Wolf section of the San Rafael swell is
associated with the magnitudes of the coil in those lo-
cations.

6. Discussion and conclusions

Analysis of elementary beam theory shows that
layer-parallel shear stresses within a bent layer are
maximal at middepth of the layer and increase with
coil. Furthermore, the high layer-parallel shear stresses
along pre-existing surfaces of weakness causes layer-
parallel faulting. Thus, as a fold progresses and the
coil increases, the strata will progressively subdivide
into thinner and thinner mechanical layers until the
generated shear stress is no longer large enough to
cause slippage.

We presented several examples where layer-parallel
faulting has occurred in monoclinal folds and showed
that coil is maximal in these locations. In this sense,
coil predicts sites of layer-parallel faults.

The concept of coil can be understood in terms of
familiar geometric concepts. The curvature, k, is
de®ned as the change in slope angle, y, with a change
in arc distance, ds, along a line. The coil is the change
in curvature with a change in arc distance along the

Fig. 13. Cross-section of steep section of San Rafael Swell mono-

cline. Radius of curvature of the synclinal hinge was measured in the

®eld near the bottom of the Entrada Sandstone. Radius of curvature

in the upper anticlinal hinge was measured from a topographic map.

Dark shaded section is exposed in the ®eld. The lighter shaded sec-

tion is inferred.
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line. The coil at a point can thus be estimated with
measurements of dip angles along the fold.

In general one is unable to make ®eld measurements
of dip angle spaced at uniform arc distances for calcu-
lating coil. Thus we present a method for unequally-
spaced measurements. One can calculate coil along a
line of curvature if one measures dips at ®ve points
equally or unequally spaced along the line of curvature
and the distance between each point, measured along
the arc-length of the bed.
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